/************************************************************************* * Compilation: javac StdStats.java * Execution: java StdStats < input.txt * * Library of statistical functions. * * The test client reads an array of real numbers from standard * input, and computes the minimum, mean, maximum, and * standard deviation. * * The functions all throw a NullPointerException if the array * passed in is null. * % more tiny.txt * 5 * 3.0 1.0 2.0 5.0 4.0 * * % java StdStats < tiny.txt * min 1.000 * mean 3.000 * max 5.000 * std dev 1.581 * *************************************************************************/ public final class StdStats { private StdStats() { } /** * Return maximum value in array, -infinity if no such value. */ public static double max(double[] a) { double max = Double.NEGATIVE_INFINITY; for (int i = 0; i < a.length; i++) { if (a[i] > max) max = a[i]; } return max; } /** * Return maximum value in subarray a[lo..hi], -infinity if no such value. */ public static double max(double[] a, int lo, int hi) { if (lo < 0 || hi >= a.length || lo > hi) throw new RuntimeException("Subarray indices out of bounds"); double max = Double.NEGATIVE_INFINITY; for (int i = lo; i <= hi; i++) { if (a[i] > max) max = a[i]; } return max; } /** * Return maximum value of array, Integer.MIN_VALUE if no such value */ public static int max(int[] a) { int max = Integer.MIN_VALUE; for (int i = 0; i < a.length; i++) { if (a[i] > max) max = a[i]; } return max; } /** * Return minimum value in array, +infinity if no such value. */ public static double min(double[] a) { double min = Double.POSITIVE_INFINITY; for (int i = 0; i < a.length; i++) { if (a[i] < min) min = a[i]; } return min; } /** * Return minimum value in subarray a[lo..hi], +infinity if no such value. */ public static double min(double[] a, int lo, int hi) { if (lo < 0 || hi >= a.length || lo > hi) throw new RuntimeException("Subarray indices out of bounds"); double min = Double.POSITIVE_INFINITY; for (int i = lo; i <= hi; i++) { if (a[i] < min) min = a[i]; } return min; } /** * Return minimum value of array, Integer.MAX_VALUE if no such value */ public static int min(int[] a) { int min = Integer.MAX_VALUE; for (int i = 0; i < a.length; i++) { if (a[i] < min) min = a[i]; } return min; } /** * Return average value in array, NaN if no such value. */ public static double mean(double[] a) { if (a.length == 0) return Double.NaN; double sum = sum(a); return sum / a.length; } /** * Return average value in subarray a[lo..hi], NaN if no such value. */ public static double mean(double[] a, int lo, int hi) { int length = hi - lo + 1; if (lo < 0 || hi >= a.length || lo > hi) throw new RuntimeException("Subarray indices out of bounds"); if (length == 0) return Double.NaN; double sum = sum(a, lo, hi); return sum / length; } /** * Return average value in array, NaN if no such value. */ public static double mean(int[] a) { if (a.length == 0) return Double.NaN; double sum = 0.0; for (int i = 0; i < a.length; i++) { sum = sum + a[i]; } return sum / a.length; } /** * Return sample variance of array, NaN if no such value. */ public static double var(double[] a) { if (a.length == 0) return Double.NaN; double avg = mean(a); double sum = 0.0; for (int i = 0; i < a.length; i++) { sum += (a[i] - avg) * (a[i] - avg); } return sum / (a.length - 1); } /** * Return sample variance of subarray a[lo..hi], NaN if no such value. */ public static double var(double[] a, int lo, int hi) { int length = hi - lo + 1; if (lo < 0 || hi >= a.length || lo > hi) throw new RuntimeException("Subarray indices out of bounds"); if (length == 0) return Double.NaN; double avg = mean(a, lo, hi); double sum = 0.0; for (int i = lo; i <= hi; i++) { sum += (a[i] - avg) * (a[i] - avg); } return sum / (length - 1); } /** * Return sample variance of array, NaN if no such value. */ public static double var(int[] a) { if (a.length == 0) return Double.NaN; double avg = mean(a); double sum = 0.0; for (int i = 0; i < a.length; i++) { sum += (a[i] - avg) * (a[i] - avg); } return sum / (a.length - 1); } /** * Return population variance of array, NaN if no such value. */ public static double varp(double[] a) { if (a.length == 0) return Double.NaN; double avg = mean(a); double sum = 0.0; for (int i = 0; i < a.length; i++) { sum += (a[i] - avg) * (a[i] - avg); } return sum / a.length; } /** * Return population variance of subarray a[lo..hi], NaN if no such value. */ public static double varp(double[] a, int lo, int hi) { int length = hi - lo + 1; if (lo < 0 || hi >= a.length || lo > hi) throw new RuntimeException("Subarray indices out of bounds"); if (length == 0) return Double.NaN; double avg = mean(a, lo, hi); double sum = 0.0; for (int i = lo; i <= hi; i++) { sum += (a[i] - avg) * (a[i] - avg); } return sum / length; } /** * Return sample standard deviation of array, NaN if no such value. */ public static double stddev(double[] a) { return Math.sqrt(var(a)); } /** * Return sample standard deviation of subarray a[lo..hi], NaN if no such value. */ public static double stddev(double[] a, int lo, int hi) { return Math.sqrt(var(a, lo, hi)); } /** * Return sample standard deviation of array, NaN if no such value. */ public static double stddev(int[] a) { return Math.sqrt(var(a)); } /** * Return population standard deviation of array, NaN if no such value. */ public static double stddevp(double[] a) { return Math.sqrt(varp(a)); } /** * Return population standard deviation of subarray a[lo..hi], NaN if no such value. */ public static double stddevp(double[] a, int lo, int hi) { return Math.sqrt(varp(a, lo, hi)); } /** * Return sum of all values in array. */ public static double sum(double[] a) { double sum = 0.0; for (int i = 0; i < a.length; i++) { sum += a[i]; } return sum; } /** * Return sum of all values in subarray a[lo..hi]. */ public static double sum(double[] a, int lo, int hi) { if (lo < 0 || hi >= a.length || lo > hi) throw new RuntimeException("Subarray indices out of bounds"); double sum = 0.0; for (int i = lo; i <= hi; i++) { sum += a[i]; } return sum; } /** * Return sum of all values in array. */ public static int sum(int[] a) { int sum = 0; for (int i = 0; i < a.length; i++) { sum += a[i]; } return sum; } /** * Plot points (i, a[i]) to standard draw. */ public static void plotPoints(double[] a) { int N = a.length; StdDraw.setXscale(0, N-1); StdDraw.setPenRadius(1.0 / (3.0 * N)); for (int i = 0; i < N; i++) { StdDraw.point(i, a[i]); } } /** * Plot line segments connecting points (i, a[i]) to standard draw. */ public static void plotLines(double[] a) { int N = a.length; StdDraw.setXscale(0, N-1); StdDraw.setPenRadius(); for (int i = 1; i < N; i++) { StdDraw.line(i-1, a[i-1], i, a[i]); } } /** * Plot bars from (0, a[i]) to (i, a[i]) to standard draw. */ public static void plotBars(double[] a) { int N = a.length; StdDraw.setXscale(0, N-1); for (int i = 0; i < N; i++) { StdDraw.filledRectangle(i, a[i]/2, .25, a[i]/2); } } /** * Test client. * Convert command-line arguments to array of doubles and call various methods. */ public static void main(String[] args) { double[] a = StdArrayIO.readDouble1D(); StdOut.printf(" min %7.3f\n", min(a)); StdOut.printf(" mean %7.3f\n", mean(a)); StdOut.printf(" max %7.3f\n", max(a)); StdOut.printf(" std dev %7.3f\n", stddev(a)); } }
Thursday, 12 July 2012
data analysis library
Labels:
data analysis library
bouncing ball
BouncingBall.java
/************************************************************************* * Compilation: javac BouncingBall.java * Execution: java BouncingBall * Dependencies: StdDraw.java * * Implementation of a 2-d bouncing ball in the box from (-1, -1) to (1, 1). * * % java BouncingBall * *************************************************************************/ public class BouncingBall { public static void main(String[] args) { // set the scale of the coordinate system StdDraw.setXscale(-1.0, 1.0); StdDraw.setYscale(-1.0, 1.0); // initial values double rx = 0.480, ry = 0.860; // position double vx = 0.015, vy = 0.023; // velocity double radius = 0.05; // radius // main animation loop while (true) { // bounce off wall according to law of elastic collision if (Math.abs(rx + vx) > 1.0 - radius) vx = -vx; if (Math.abs(ry + vy) > 1.0 - radius) vy = -vy; // update position rx = rx + vx; ry = ry + vy; // clear the background StdDraw.setPenColor(StdDraw.GRAY); StdDraw.filledSquare(0, 0, 1.0); // draw ball on the screen StdDraw.setPenColor(StdDraw.BLACK); StdDraw.filledCircle(rx, ry, radius); // display and pause for 20 ms StdDraw.show(20); } } }
Labels:
Bouncing Ball
draw a rose
Rose.java
/************************************************************************* * Compilation: javac Rose.java * Execution: java Rose N * Dependencies: StdDraw.java * * Plots an N petal rose (if N is odd) and a 2N-petal rose if N is * even, using standard graphics. * *************************************************************************/ public class Rose { public static void main(String[] args) { int N = Integer.parseInt(args[0]); StdDraw.setXscale(-1, +1); StdDraw.setYscale(-1, +1); StdDraw.setPenColor(StdDraw.PINK); double x0 = 0, y0 = 0; for (double t = 0.0; t <= 360.0; t += 0.1) { double theta = Math.toRadians(t); double r = Math.sin(N * theta); double x1 = r * Math.cos(theta); double y1 = r * Math.sin(theta); StdDraw.line(x0, y0, x1, y1); x0 = x1; y0 = y1; } } }
Labels:
draw a rose
interactive user input
TwentyQuestions.java
/************************************************************************* * Compilation: javac TwentyQuestions.java * Execution: java TwentyQuestions * Dependencies StdIn.java * * % java TwentyQuestions * I'm thinking of a number between 1 and 1,000,000 * What's your guess? 500000 * Too high * What's your guess? 250000 * Too low * What's your guess? 375000 * Too high * What's your guess? 312500 * Too high * What's your guess? 300500 * Too low * ... * *************************************************************************/ public class TwentyQuestions { public static void main(String[] args) { // Generate a number and answer questions // while the user tries to guess the value. int N = 1 + (int) (Math.random() * 1000000); StdOut.print("I'm thinking of a number "); StdOut.println("between 1 and 1,000,000"); int m = 0; while (m != N) { // Solicit one guess and provide one answer StdOut.print("What's your guess? "); m = StdIn.readInt(); if (m == N) StdOut.println("You win!"); if (m < N) StdOut.println("Too low "); if (m > N) StdOut.println("Too high"); } } }
Labels:
interactive user input
generating a random sequence
RandomSeq.java
/************************************************************************* * Compilation: javac RandomSeq.java * Execution: java RandomSeq N * * Prints N numbers between 0 and 1. * * % java RandomSeq 5 * 0.1654760343787165 * 0.6212262060326124 * 0.631755596883274 * 0.4165639935584283 * 0.4603525361488371 * *************************************************************************/ public class RandomSeq { public static void main(String[] args) { // command-line argument int N = Integer.parseInt(args[0]); // generate and print N numbers between 0 and 1 for (int i = 0; i < N; i++) { System.out.println(Math.random()); } } }
Labels:
generating a random sequence
self-avoiding random walks
SelfAvoidingWalk.java
/************************************************************************* * Compilation: javac SelfAvoidingWalk.java * Execution: java SelfAvoidingWalk N T * * Generate T self-avoiding walks of length N. * Report the fraction of time the random walk is non self-intersecting. * *************************************************************************/ public class SelfAvoidingWalk { public static void main(String[] args) { int N = Integer.parseInt(args[0]); // lattice size int T = Integer.parseInt(args[1]); // number of trials int deadEnds = 0; // trials resulting in a dead end // simulate T self-avoiding walks for (int t = 0; t < T; t++) { boolean[][] a = new boolean[N][N]; // intersections visited int x = N/2, y = N/2; // current position // repeatedly take a random step, unless you've already escaped while (x > 0 && x < N-1 && y > 0 && y < N-1) { // dead-end, so break out of loop if (a[x-1][y] && a[x+1][y] && a[x][y-1] && a[x][y+1]) { deadEnds++; break; } // mark (x, y) as visited a[x][y] = true; // take a random step to unvisited neighbor double r = Math.random(); if (r < 0.25) { if (!a[x+1][y]) x++; } else if (r < 0.50) { if (!a[x-1][y]) x--; } else if (r < 0.75) { if (!a[x][y+1]) y++; } else if (r < 1.00) { if (!a[x][y-1]) y--; } } } System.out.println(100*deadEnds/T + "% dead ends"); } }
Labels:
self-avoiding random walks
Subscribe to:
Posts (Atom)